As shown in FIG. 5, at block 48, the method includes the access node dynamically setting a channel-quality threshold (e.g., UL-SCell-deconfig) applicable to control when to deconfigure uplink carrier aggregation service provided by the access node, with the dynamically setting of the channel-quality threshold being based on uplink spectral efficiency of the access node. And at block 50, the method includes the access node applying the dynamically set channel-quality threshold to control when to deconfigure the uplink carrier aggregation service for each of plurality of UEs served by the access node.
Various features discussed above can be applied in this context as well, and vice versa.
Finally, FIG. 6 is a simplified block diagram of an access node that could carry out various features described herein. As shown in FIG. 5, the example access node includes a wireless communication interface 52, a backhaul communication interface 54, and a controller 56, all of which could be integrated together and/or communicatively linked by a network, system bus, or other connection mechanism 58.
Wireless communication interface 52 includes a radio 60 and antenna structure 62, among other components, cooperatively enabling the access node to provide wireless service on a plurality of carriers. For instance, the radio could operate to interface between RF signals and baseband signals. And the antenna structure 62 could comprise a plurality of antennas (e.g., an antenna array) through which the access node communicates over the air interface.