白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Techniques for adjusting operation of an electronic device

專利號
US11516630B2
公開日期
2022-11-29
申請人
GOOGLE LLC(US CA Mountain View)
發(fā)明人
Brian Silverstein; Eden Sherry
IPC分類
H04W4/33; G01S13/56; G01S13/88; H04W4/029; G01S7/00; G01S13/42; G01S13/58; G01S13/86; G01S13/87; H04W8/00
技術(shù)領(lǐng)域
smart,radar,in,or,home,some,devices,device,e.g,data
地域: CA CA Mountain View

摘要

Techniques for adjusting operation of an electronic device are described. In an example, while the electronic device is operating in a first operating mode according to a first parameter, a set of signals indicating an object in a room, and based on received reflected radar signals, are transmitted by a radar transceiver of the electronic device to one or more processors of the electronic device. By analyzing the set of signals to identify the object as a person, the one or more processors determine that the room is occupied. In accordance with determining that the room is occupied by the person, the electronic device is adjusted to operate in a second operating mode according to a second parameter suitable for sensing objects at a closer distance than the first parameter.

說明書

In some implementations, the smart thermostat 102 resolves such issues at least by virtue of the use of a rechargeable battery (or equivalently capable onboard power storage medium) that will recharge during time intervals in which the hardware power usage is less than what power stealing can safely provide, and that will discharge to provide the needed extra electrical power during time intervals in which the hardware power usage is greater than what power stealing can safely provide. In order to operate in a battery-conscious manner that promotes reduced power usage and extended service life of the rechargeable battery, the thermostat 1800 is provided with both (i) a relatively powerful and relatively power-intensive first processor (such as a Texas Instruments AM3703 microprocessor) that is capable of quickly performing more complex functions such as driving a visually pleasing user interface display and performing various mathematical learning computations, and (ii) a relatively less powerful and less power-intensive second processor (such as a Texas Instruments MSP430 microcontroller) for performing less intensive tasks, including driving and controlling the occupancy sensors. In some implementations, to conserve power, the first processor is maintained in a “sleep” state for extended periods of time and is “woken up” only for occasions in which its capabilities are needed, whereas the second processor is kept on more or less continuously (although preferably slowing down or disabling certain internal clocks for brief periodic intervals to conserve power) to perform its relatively low-power tasks. The first and second processors are mutually configured such that the second processor can “wake” the first processor on the occurrence of certain events, which can be termed “wake-on” facilities. In some implementations, these wake-on facilities can be turned on and turned off as part of different functional and/or power-saving goals to be achieved. For example, a “wake-on-PROX” facility can be provided by which the second processor, when detecting a user's hand approaching the thermostat dial by virtue of an active proximity sensor (PROX, such as provided by a Silicon Labs SI1142 Proximity/Ambient Light Sensor with I2C Interface), “wakes up” the first processor so that it can provide a visual display to the approaching user and be ready to respond more rapidly when their hand touches the dial. As another example, a “wake-on-PIR” facility can be provided by which the second processor will wake up the first processor when detecting motion somewhere in the general vicinity of the thermostat by virtue of a passive infrared (PR) motion sensor, such as provided by a PerkinElmer DigiPyro PYD 1998 dual element pyrodetector. Notably, wake-on-PIR is not synonymous with auto-arrival, as there would need to be N consecutive buckets of sensed PIR activity to invoke auto-arrival, whereas only a single sufficient motion event can trigger a wake-on-PIR wake-up.

權(quán)利要求

1
微信群二維碼
意見反饋