FIG. 10C shows a multi-dimensional radar system with radar control module 1020, radio transmitters 1022, 1024, and 1026, and radio receivers 1028, 1030, 1032, and 1034. In some implementations, the radio transmitters 1022, 1024, and 1026 and the radio receivers 1028, 1030, 1032, and 1034 are all on a same plane perpendicular to a dimension of interest. In some implementations, the radio transmitters 1022, 1024, and 1026 and the radio receivers 1028, 1030, 1032, and 1034 each include an antenna configured for one or more radio frequency bands. For example, first the transmitter 1022 emits a radio signal. The receivers 1028, 1030, 1032, and 1034 receive radio waves corresponding to the emitted radio signal. The control module 1020 compares the timing and phase of the received radio waves with the emitted radio signal to determine the location and/or motion of various detected objects. Differences between the radio waves received at respective receivers are analyzed to determine the location/motion of the detected objects with greater accuracy and/or precision. Next the transmitter 1024 emits a radio signal and the process is repeated. Then transmitter 1026 emits a radio signal and the process is repeated again. Utilizing multiple transmitters and multiple receivers at known distances from one another allows for more accurate and precise results. Utilizing multiple receivers also enables tracking of multiple objects moving simultaneously. For example, accurate tracking of N objects generally requires at least N+1 receivers.