At 403, the base station determines receiving positions for monitoring the data to be transmitted within the set transmission period, and monitors the data to be transmitted sent by the data sending terminal using different beams at the receiving positions, and the data to be transmitted can indicate a transmission beam corresponding to the data.
At 404, the base station determines an optimal transmission beam based on monitoring results.
In some embodiments, for the operations 403 and 404, reference may be made to the description of operations 203 and 204 in the embodiment shown in
In some embodiments, after determining the optimal transmission beam, the base station may send a message indicating the optimal transmission beam to the user equipment. For example, the base station determines beam 3 as a beam with the best signal quality based on the monitoring results of monitoring the random access preamble, and may indicate to the user equipment that beam 3 is a beam with the best signal quality. In this way, the user equipment may preferentially use beam 3 when subsequently sending data to the base station.
In this embodiment, an implementation manner of determining the optimal transmission beam during the initial access process of the user equipment is disclosed. The user equipment may send random access preambles at multiple sending positions using different beams in a random access process, and the base station determines an optimal beam for communication during the initial access process, thereby avoiding the problem in the related art that the user equipment cannot determine the optimal beam during the initial access process when the channel is busy.