The heat in data centers can often exceed the cooling ability of a computing device's built-in fans, which force air across heat sinks on the computing device in order to extract and exhaust the waste heat. Traditional methods for improving cooling of computing devices in data centers include mixing in refrigerated air to reduce the temperature of the air that is forced across the computing device by its built-in cooling fans. A significant drawback to this approach is that refrigeration uses significant amounts of energy on top of the energy already used by the computing devices themselves.
For at least these reasons, there is a desire for a more energy efficient solution to allow for improved efficient cooling and thermal management of computing devices in a data center.
In one embodiment, the rack comprises a number of planar shelves, each having one or more positions for holding a computing device. The rack may also comprise an air barrier (e.g., affixed to the rack) and having an opening for each of the computing devices to exhaust hot air through. The rack may be configured to be connected to other racks to form a vertical geometric prism (e.g., with the air barrier forming an inside surface). In some embodiments the prism may tapered. The planar shelves may be offset vertically from neighboring shelves to form a helix. The helix may beneficially create a vortex within the geometric prism from air drawn into and or exhausted by the computing devices.
In some embodiments, the shelves may be annular sectors or trapezoidal in shape, and the computing devices may be positioned to draw air in from, or exhaust air to, the inside of the geometric prism, either in a perpendicular direction or at an angle relative perpendicular.