In order to cool components, such as electronics and photoelectronic components, a higher Leidenfrost point is desirable, which would allow liquid droplets to come into direct contact with the hot surface. Described herein are cooling systems and methods that use modified surfaces that eliminate or mitigate the Leidenfrost effect so that Joule-Thomson cooling is more efficient. The systems and methods include forcing a liquid and/or a real gas (e.g., nitrogen and/or argon) through a valve while keeping it insulated so that no heat is exchanged with the environment, which result in a change in temperature called the Joule-Thomson effect. The mixed phase of vapor and liquid droplets are applied to a hot surface that includes three-dimensional topography with macroscopic or microscopic features on the surface, such as a plurality of pillars and trenches. The surface features allow the vapor layer that is formed on the hot surface to move through the features, horizontally across the hot surface, which lowers the surface liquid closer to the surface for faster cooling.
The coolant 103 includes a pressurized liquid or a compressed gas, or a mixture thereof. Non-limiting examples of liquids and/or compressed gases include nitrogen (N2), argon, krypton, or an engineered refrigerant, for example, a hydrochlorofluorocarbon (e.g., R22 or R134A).