Referring to FIG. 26A, a boundary of frequency hopping may be determined based on the maximum number of PUCCH instances. Two PUCCH instances may be deferred, and four non-consecutive PUCCH instances may belong to the same frequency hop. In this case, the PUCCH instances consecutive in the time domain among the PUCCH instances belonging to the same frequency hop may maintain phase coherence and/or power coherence. Here, phase coherence and/or power coherence may be maintained in the second, third, and fourth PUCCH instances, and phase coherence and/or power coherence may be maintained in the fifth, sixth, seventh, and eighth PUCCH instances.
Referring to FIG. 26B, frequency hopping may be performed at a boundary between an invalid symbol and a valid symbol. When Method 3.2-3 is applied, two PUCCH instances may be deferred, and the remaining PUCCH instances may belong to different frequency hops based on the deferred PUCCH instances. Phase coherence and/or power coherence may be maintained in the fourth, fifth, sixth, seventh, and eighth PUCCH instances.
Referring to FIG. 26C, frequency hopping may be performed at a boundary between an invalid symbol and a valid symbol, and the maximum number of consecutive PUCCH instances may be set. When Method 3.2-4 is applied, four or less PUCCH instances may belong to the same frequency hop. The terminal may maintain phase coherence and/or power coherence in the second, third, fourth, and fifth PUCCH instances. In addition, the terminal may maintain phase coherence and/or power coherence in the sixth, seventh, and eighth PUCCH instances.