白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Subcarrier mapping techniques for guard interval-based orthogonal frequency division multiplexing communications

專(zhuān)利號(hào)
US11616671B1
公開(kāi)日期
2023-03-28
申請(qǐng)人
QUALCOMM Incorporated(US CA San Diego)
發(fā)明人
Iyab Issam Sakhnini; Hemant Saggar; Tao Luo
IPC分類(lèi)
H04L27/26; H04L5/00
技術(shù)領(lǐng)域
ofdm,matrix,gi,columns,may,symbol,manager,guard,or,samples
地域: CA CA San Diego

摘要

Methods, systems, and devices for wireless communications are described in which a user equipment (UE) or base station may generate orthogonal frequency division multiplexing (OFDM) symbols based on a permutation matrix (P) that permutes guard interval (GI) samples and data samples such that the OFDM symbols have power values across the symbols that are supportable by a transmitting device. The permutation matrix may map GI inputs to a subset of subcarriers for an OFDM communication, where the permutation matrix determined based at least in part on a first number of columns of a sub-matrix of a first matrix. The first matrix may be an inverse fast Fourier transform (IFFT) matrix, or may be a product of the IFFT matrix and a subcarrier mapping matrix. The first number of columns may correspond to a number of subcarriers that carry time-domain GI samples.

說(shuō)明書(shū)

Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC). Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs). Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105).

The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz). Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋