白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for a two-tier machine learning model for generating conversational responses

專利號
US11616741B2
公開日期
2023-03-28
申請人
Capital One Services, LLC(US VA McLean)
發(fā)明人
Kunlaya Soiaporn; Victor Alvarez Miranda; Pamela Katali; Arturo Hernandez Zeledon; Rui Zhang; Kwan-Yuet Ho
IPC分類
H04L51/02; G06K9/62; G10L15/16; G06N20/20
技術(shù)領(lǐng)域
learning,model,intent,machine,user,may,tier,or,in,cluster
地域: VA VA McLean

摘要

Methods and systems are described for generating dynamic conversational responses using two-tier machine learning models. The dynamic conversational responses may be generated in real time and reflect the likely goals and/or intents of a user. The two-tier machine learning model may include a first tier that determines an intent cluster based on a feature input, and a second tier that determines a specific intent from the cluster.

說明書

In some embodiments, model 300 may predict a goal or intent of a user. This goal or intent may be selected from a plurality of goals and/or intents stored by the system. Model 300 may first determine an intent cluster (e.g., a group or category of intents) and then select a specific intent from the intent cluster. In some embodiments, the system may determine the cluster of intents based on the similar feature inputs. For example, the system may cluster goals/intents based on similar characteristics of the users. For example, the system may determine that users who ask different questions about payment have similar account information and digital activities. The system may further determine that the users tend to be different from those of users who have a one-off type request, such as lost card reports or travel notification.

A multi-tiered approach may be used to capture this behavior. The first layer of the model (e.g., model 320) identifies which group of goals is most likely, then in the subsequent layer, the model (e.g., model 330) identifies which specific goals are most likely. The clusters of goals used in the first layer (e.g., model 320) are derived based on feature data and the known goal/intent list, which can change as available data changes or expands. In some embodiments, a specific intent may comprise its own intent cluster and/or not every potential specific intent needs to belong to an intent cluster. For example, if the first-layer model (e.g., model 320) determines that none of the existing clusters are likely, a default classification model may be used to make a prediction at goal level to make sure that goals not belonging to any cluster can be predicted.

權(quán)利要求

1
微信群二維碼
意見反饋