白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for a two-tier machine learning model for generating conversational responses

專利號
US11616741B2
公開日期
2023-03-28
申請人
Capital One Services, LLC(US VA McLean)
發(fā)明人
Kunlaya Soiaporn; Victor Alvarez Miranda; Pamela Katali; Arturo Hernandez Zeledon; Rui Zhang; Kwan-Yuet Ho
IPC分類
H04L51/02; G06K9/62; G10L15/16; G06N20/20
技術(shù)領(lǐng)域
learning,model,intent,machine,user,may,tier,or,in,cluster
地域: VA VA McLean

摘要

Methods and systems are described for generating dynamic conversational responses using two-tier machine learning models. The dynamic conversational responses may be generated in real time and reflect the likely goals and/or intents of a user. The two-tier machine learning model may include a first tier that determines an intent cluster based on a feature input, and a second tier that determines a specific intent from the cluster.

說明書

3. The method of any one of embodiments 1-2, further comprising: receiving a second user action during the conversational interaction with the user interface; in response to receiving the second user action, determining a second feature input for the first machine learning model based on the second user action; inputting the second feature input into the first machine learning model; receiving a different output from the first machine learning model, wherein the different output corresponds to a different intent cluster from the plurality of intent clusters; and inputting the different output into the second machine learning model.
4. The method of any one of embodiments 1-3, wherein the first machine learning model is a supervised machine learning model, and wherein the second machine learning model is a supervised machine learning model.
5. The method of any one of embodiments 1-4, wherein the first machine learning model is a factorization machine model, and wherein the second machine learning model is an artificial neural network model.
6. The method of any one of embodiments 1-5, further comprising clustering available specific intents into the plurality of intent clusters.
7. The method of any one of embodiments 1-6, further comprising: receiving a first labeled feature input, wherein the first labeled feature input is labeled with a known intent cluster for the first labeled feature input; and training the first machine learning model to classify the first labeled feature input with the known intent cluster.
8. The method of any one of embodiments 1-7, wherein the first feature input is a conversational detail or information from a user account of the user.
9. The method of any one of embodiments 1-8, wherein the first feature input indicates a time at which the user interface was launched.
10. The method of any one of embodiments 1-9, wherein the first feature input indicates a webpage from which the user interface was launched.

權(quán)利要求

1
微信群二維碼
意見反饋