According to some embodiments, the Scheduler can monitor condition(s) for or receive an indication that one or more predefined condition is satisfied that would trigger activation of data traffic steering. For example, the condition can be when eNB buffer reaches a buffer threshold (e.g., 90% capacity), a buffer congestion (e.g., data packet delivery is slow, or data packets are getting dropped) and/or the radio conditions are low quality (e.g., determined from evaluation of the channel quality indicator report) that is causing the packet to be delayed or dropped. When the condition is satisfied, the Scheduler determines if a second link is available. If the second link is available, the Scheduler can began aggregating (e.g., splitting data packets) associated with high priority (e.g., data packets associated with priority service devices) and transmit the data packets using the LTE link and NR link. In some embodiments, the preference is to use LTE link until an event occurs (e.g., condition) that would require a higher throughput of data packets. In some embodiments, the Scheduler can prefer the NR link if the throughput on NR link is better than the LTE link. In some embodiments, the Scheduler can split the data packet transmission to achieve a predefine throughput requirement, by transmitting higher number of packets over first link verse the second link and switch based on overall performance of the links. For example, the Scheduler can transmit 6 packets using both links (e.g., 5 data packets on LTE link and 1 data packet over the NR link). If the LTE link gets full (e.g., buffer is getting full) and channel conditions are better on NR link, then the Scheduler can adjust (e.g., 1 data packet over LTE link and 5 data packets over NR link).