As an example, a subcarrier spacing of a preamble signal is equal to a subcarrier spacing of a downlink signal, and the sequence of the preamble signal is mapped to M contiguous sub-carriers on the first bandwidth in frequency domain. For example, when both the subcarrier spacing of the preamble signal and the subcarrier spacing of the downlink signal are 60 kHz, the sequence of the preamble signal adopts the mapping manner to contiguous subcarriers, and then a shorter information segment of the preamble signal symbol is obtained.
As an example, a subcarrier spacing of a preamble signal is less than a subcarrier spacing of a downlink signal, and the sequence of the preamble signal is mapped to M discrete subcarriers of the first bandwidth in the frequency domain. In this case, an interval for which sequence elements of the preamble signal are mapped in frequency domain can be increased to achieve the purpose of obtaining a shorter information segment of the preamble signal symbol. For example, if the subcarrier spacing of the preamble signal is 30 kHz and the subcarrier spacing of the downlink signal is 60 kHz, then a distance between two mapped adjacent subcarriers can be greater than or equal to the subcarrier spacing of the downlink signal, when the sequence of the preamble signal is mapped to discrete subcarriers on the first bandwidth in frequency domain. For example, the distance is two sub-carriers with 30 kHz). Thus, a shorter information segment of the preamble signal symbol can be obtained.
It should be understood that when the preamble signal includes multiple types of sequences, the mapping manner of each sequence in frequency domain may adopt one of the above-mentioned mapping manners in frequency domain. The mapping manners of multiple sequences in the frequency domain may be the same or different, which is not limited in present disclosure.