Incidentally, a case is assumed in which the characteristics-acquired gradation value is not included in such gradation values for which the spectral reflectances are obtained regarding the sample color. Although the spectral reflectances of all the gradation values in increments of 0.1 from 0 to 1 are obtained regarding the sample color in the above-described example, it conceivable that the characteristics-acquired gradation value is 0.25. In such a case, in the present embodiment, after a quintic equation corresponding to the gradation value of 0.2 and a quintic equation corresponding to the Gradation value of 0.3 are obtained, a coefficient of a quintic equation corresponding to the gradation value of 0.25 is obtained by interpolation. Then, a quintic equation that has the coefficient obtained by the interpolation is adopted as the first relational equation.
After Step S110 is ended, the spectral reflectances of the maximum gradation value for the prediction target color are applied to the first relational equation for each of the plurality of sample colors, whereby the prediction values of the spectral reflectances of the characteristics-acquired gradation value for the prediction target color are obtained (Step S120). If 32 colors are prepared as the sample colors, then 32 prediction values are obtained per characteristics-acquired gradation value in Step S120.