In other embodiments, techniques may be used destroy the USB drive's 300 circuit with electricity. For instance, a fuse could be used on one of the circuit lines on the PCB of the USB drive that will blow when a high voltage is applied to it. Alternately, voltage that is above specification could be applied directly to the pins of a microchip, causing it to burn up. There are several ways this power could be applied. The USB connector 302 could be configured to connect to a special device that delivers high current through the connector. Alternately, power could be delivered wirelessly from a device (e.g., through a pick-up coil). In order to not have accidental destruction, a two-factor intent would be beneficial. For example, pushing a button on the USB drive 300 or other actuator while presenting the voltage injection could be used for such a purpose.
In another embodiment of the invention, the USB drive 300 is incapable of being used by the technician until the USB drive is successfully activated or otherwise authenticated. In one example, a security key may be used to activate a USB drive. A mechanical key could be used in some cases, but an electronic key may have additional benefits. The electronic key may take many different forms such as those discussed above, as well as an RFID badge, an NFC reader, a device with IR transceivers, etc. In one example, an NFC reader is configured to communicate an activation signal. This activation signal could be writing a bit to the NFC tag, or a wireless or wireless signal delivered directly to the USB components within the USB drive. In this example, each USB drive may have an NFC tag with a unique serial number or other identifier.