In other cases, the output samples of the scaler/inverse transform unit 351 can pertain to an inter coded, and potentially motion compensated block. In such a case, a Motion Compensation Prediction unit 353 can access the reference picture memory 357 to fetch samples used for prediction. After motion compensating the fetched samples in accordance with the symbols 321 pertaining to the block, these samples can be added by the aggregator 355 to the output of the scaler/inverse transform unit 351 (in this case called the residual samples or residual signal) so to generate output sample information. The addresses within the reference picture memory 357, from where the Motion Compensation Prediction unit 353 fetches prediction samples, can be controlled by motion vectors. The motion vectors may be available to the Motion Compensation Prediction unit 353 in the form of symbols 321 that can have, for example x, Y, and reference picture components. Motion compensation also can include interpolation of sample values as fetched from the reference picture memory 357 when sub-sample exact motion vectors are in use, motion vector prediction mechanisms, and so forth.
The output samples of the aggregator 355 can be subject to various loop filtering techniques in the loop filter unit 356. Video compression technologies can include in-loop filter technologies that are controlled by parameters included in the coded video bitstream and made available to the loop filter unit 356 as symbols 321 from the parser 320, but can also be responsive to meta-information obtained during the decoding of previous (in decoding order) parts of the coded picture or coded video sequence, as well as responsive to previously reconstructed and loop-filtered sample values.