In video encoding, compression is performed using data redundancy in both spatial and temporal dimensions. Spatial redundancy is greatly reduced by transform coding. Temporal redundancy is reduced through predictive coding. Observing that the time correlation is maximized along the motion trajectory, prediction for motion compensation is used for this purpose. In this context, the main purpose of motion estimation is not to find “real” motion in the scene, but to maximize compression efficiency. In other words, the motion vector must provide accurate prediction of a signal. In addition, since motion information must be transmitted as overhead in a compressed bit stream, it must enable a compressed representation. Efficient motion estimation is important in achieving high compression in video encoding.
Motion is an important source of information in video sequences. Motion occurs not only because of movement of an object but also because of movement of the camera. Apparent motion, also known as optical flow, captures spatio-temporal variations in pixel intensity in an image sequence.
Bidirectional Optical Flow (BIO) is a motion estimation/compensation technique for motion refinement based on the assumption of optical flow and steady motion, which is disclosed in JCTVC-C204 and VCEG-AZ05 BIO. The bidirectional optical flow estimation method currently under discussion has an advantage on allowing fine correction of motion vector information, but requires much higher computation complexity than conventional bidirectional prediction for fine correction of motion vector information.
Non-Patent Document 1: JCTVC-C204 (E. Alshina, et al., Bi-directional optical flow, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 3rd Meeting: Guangzhou, CN, 7-15 October 2010)