This example shows the calculation results of the simulation of the amount of light reaching a color conversion layer in a light-emitting apparatus 1 of one embodiment of the present invention in which the refractive index of a hole-transport layer is low and the amount of light reaching a color conversion layer in a comparative light-emitting apparatus 1 in which the refractive index of a hole-transport layer is normal.
The calculation was performed using an organic device simulator (semiconducting emissive thin film optics simulator, setfos: Cybernet Systems Co., Ltd.). Alight-emitting region was fixed to the center of a light-emitting layer. As the refractive indexes of materials of the organic layers, the low refractive index and the normal refractive index were assumed to be 1.6 and 1.9, respectively. It is assumed that there is no wavelength dispersion. The thickness of each layer was optimized so that the blue index (BI) can be the maximum when the refractive index of the color conversion layer was 1. Note that light emission was made to have a spectrum shown in