The above-described layers and electrodes such as the EL layer 103, the first light-emitting unit 511, the second light-emitting unit 512, and the charge generation layer can be formed by a method such as an evaporation method (including a vacuum evaporation method), a droplet discharge method (also referred to as an ink-jet method), a coating method, or a gravure printing method. A low molecular material, a middle molecular material (including an oligomer and a dendrimer), or a high molecular material may be included in the layers and electrodes.
Here, in consideration of color reproducibility of a full color display, in order to express a wider color gamut, it is essential to obtain light with high color purity. Light emitted from an organic compound has a broader spectrum than light emitted from an inorganic compound in many cases, and the spectrum is preferably narrowed with a microcavity structure in order to obtain light emission with sufficiently high color purity.
Actually, a light-emitting device appropriately using a suitable dopant and a microcavity structure can provide blue light emission that corresponds to the color gamut of Rec.2020, which is defined by the BT.2020 standard and the BT.2100 standard. When the microcavity structure of the light-emitting device is configured to enhance blue light, a light-emitting apparatus with high color purity and high efficiency can be obtained.