Note that one or both of Ar1 and Ar2 have one or more hydrocarbon groups each having 1 to 12 carbon atoms each forming a bond only by the sp3 hybrid orbitals. The total number of the carbon atoms in the hydrocarbon groups is greater than or equal to 8, and the total number of the carbon atoms included in the hydrocarbon group(s) bonded to at least one of A1 and Ar2 is greater than or equal to 6. As the hydrocarbon group having 1 to 12 carbon atoms each forming a bond only by the sp3 hybrid orbitals, an alkyl group having 3 to 8 carbon atoms or a cycloalkyl group having 6 to 12 carbon atoms is preferable. Specifically, it is possible to use a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, a neopentyl group, a hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, a neohexyl group, a heptyl group, an octyl group, a cyclohexyl group, a 4-methylcyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a decahydronaphthyl group, a cycloundecyl group, a cyclododecyl group, and the like. It is particularly preferable to use a t-butyl group, a cyclohexyl group, or a cyclododecyl group.
Note that in the case where a plurality of straight-chain alkyl groups each having one or two carbon atoms are bonded to Ar1 or Ar2 as the hydrocarbon groups, the straight-chain alkyl groups may be bonded to each other to form a ring.