Although the cross-sectional view in FIG. 6B illustrates only one light-emitting element 617, a plurality of light-emitting elements are arranged in a matrix in the pixel portion 602. Light-emitting elements which emit light of three kinds of colors (R, G, and B) are selectively formed in the pixel portion 602, whereby a light-emitting device capable of full color display can be formed. In addition to the light-emitting elements that emit light of three kinds of colors (R, G, and B), for example, light-emitting elements that emit light of white (W), yellow (Y), magenta (M), cyan (C), and the like may be formed. For example, the light-emitting elements that emit light of a plurality of kinds of colors are used in combination with the light-emitting elements that emit light of three kinds of colors (R, G, and B), whereby effects such as an improvement in color purity and a reduction in power consumption can be obtained. Alternatively, a light-emitting device which is capable of full color display may be fabricated by a combination with color filters. Furthermore, the light-emitting device may have an improved emission efficiency and a reduced power consumption by combination with quantum dots.
The sealing substrate 606 is attached to the element substrate 601 with the sealant 605, so that the light-emitting element 617 is provided in a space 618 surrounded by the element substrate 601, the sealing substrate 606, and the sealant 605. The space 618 may be filled with an inert gas (such as nitrogen or argon) or the sealant 605.