According to an aspect of the present invention, there is provided in a distributed power system multiple DC power sources and multiple power modules which include inputs coupled respectively to the DC power sources. The power modules each include outputs coupled in series to form a serial string. An inverter is coupled to the serial string. The inverter converts power input from the string and produces output power. A protection mechanism in the power modules shuts down the power modules and ceases the power input to the inverter when the inverter stops producing the output power. Typically, the inverter is connected to the electrical grid. A monitoring mechanism is attached to the electrical grid which monitors one or more electrical parameters of the electrical grid. A shutdown mechanism is attached to the monitoring mechanism which when one or more of the electrical parameters is out of predetermined specification, the inverter stops the production of the output power or disconnects from the grid. A switch is preferably disposed between the serial string and the inverter. The switch is activated by the shutdown mechanism and the protection mechanism senses a change in current flowing through the serial string when the switch is activated. When the switch is connected serially with the serial string, the protection mechanism senses that current less than a previously specified minimal threshold current in the serial string; or when the switch is connected in parallel with the serial string the protection mechanism senses a current greater than a previously specified maximal threshold current in the string. Alternatively a signal-providing mechanism is attached to the inverter which provides a signal based on the shutdown mechanism. Multiple receivers are attached respectively to the power modules. The receivers receive the signal and multiple enabling mechanisms, which are attached respectively to the receivers, enable the respective power modules to supply the input power to the inverter based on the presence of the signal or absence thereof. When the signal is a keep-alive signal, the enabling mechanisms enable the respective power modules to supply the input power to the inverter based on the presence of the keep-alive signal. When the signal is a shut-down signal, the enabling mechanism disables the respective power modules and stops supply of the input power to the inverter based on the presence of the shut-down signal. The signal in the serial string is optionally from the electrical grid and detected at the frequency of the electrical grid or detected at a higher frequency up converted from the frequency of the electrical grid. The signal in the serial string is optionally from the inverter or the output power therefrom, and detected at a switching frequency of the inverter. The signal is optionally superimposed on the power input to the inverter from the serial string. The signal may be wirelessly transmitted by the signal-providing mechanism, and the receiver in each of the power modules, receives the wirelessly transmitted signal.