What is needed, then, is an advanced power electronics architecture suitable for supporting mission adaptation and change, without requiring any hardware swapping, while a ship is in service. What is further needed are power electronics building blocks (PEBBs) which are suitable for power generation and power distribution in NOMARs ships and in other unmanned vehicles (UxV) such as unmanned underwater vehicles, unmanned aerial vehicles, and also unmanned surface vehicles, aircraft, and spaceships.
In some embodiments, the present system provides for an adaptable power converter system with multiple connected, separate power building blocks (which may for example be coupled with each other via a backplane or via electrical cabling). At least some, and possibly all of the building blocks are adaptable power electronics building block least replaceable units (A-PEBB LRUs). In one exemplary embodiment, an A-PEBB LRU may be built with SiC MOSFETs, and employs a connection topology which is self-reconfigurable.
In an exemplary embodiment, an A-PEBB LRU is a discrete unit which may include four power stages, which may be full bridge converters (also referred to as H-bridges) which are electrically coupled in series. The series of four power stages starts and terminates with two outer H-bridges (which connect to power sources or power loads, referred to generally as “power resources”). Sandwiched between the two outer bridges are two inner bridges/power stages which are coupled via a high frequency (100-200 kHz) solid state isolation transformer. The two outer bridges or power stages are self-configurable power stages or adaptable power stages. Each self-configurable power stage (SCPS) may also be referred to at points as a self-configurable H-Bridge (SCHB).