In some embodiments, the FE material includes one of: Hafnium (Hf), Zirconium (Zr), Aluminum (Al), Silicon (Si), their oxides or their alloyed oxides. In some embodiments, the FE material includes one of: Al(1-x)Sc(x)N, Ga(1-x)Sc(x)N, Al(1-x)Y(x)N, or Al(1-x-y)Mg(x)Nb(y)N, y doped HfO2, where x includes one of: Al, Ca, Ce, Dy, Er, Gd, Ge, La, Sc, Si, Sr, Sn, or Y, wherein ‘x’ is a fraction. In some embodiments, the FE material includes Bismuth ferrite (BFO), lead zirconate titanate (PZT), BFO with doping material, or PZT with doping material, wherein the doping material is one of Nb or; and relaxor ferroelectrics such as PMN-PT.
In some embodiments, the FE material includes Bismuth ferrite (BFO), BFO with a doping material where in the doping material is one of Lanthanum, or any element from the lanthanide series of the periodic table. In some embodiments, the FE material includes lead zirconium titanate (PZT), or PZT with a doping material, wherein the doping material is one of La, Nb. In some embodiments, the FE material includes a relaxor ferroelectric which includes one of lead magnesium niobate (PMN), lead magnesium niobate-lead titanate (PMN-PT), lead lanthanum zirconate titanate (PLZT), lead scandium niobate (PSN), Barium Titanium-Bismuth Zinc Niobium Tantalum (BT-BZNT), and/or Barium Titanium-Barium Strontium Titanium (BT-BST).
In some embodiments, the FE material includes Hafnium oxides of the form, Hf1-x Ex Oy where E can be Al, Ca, Ce, Dy, er, Gd, Ge, La, Sc, Si, Sr, Sn, or Y. In some embodiments, the FE material includes Niobate type compounds LiNbO3, LiTaO3, Lithium iron Tantalum Oxy Fluoride, Barium Strontium Niobate, Sodium Barium Niobate, or Potassium strontium niobate.