白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Non-linear polar material based low power multiplier with NOR and NAND gate based reset mechanism

專利號(hào)
US11888479B1
公開日期
2024-01-30
申請(qǐng)人
Kepler Computing Inc.(US CA San Francisco)
發(fā)明人
Amrita Mathuriya; Rafael Rios; Ikenna Odinaka; Rajeev Kumar Dokania; Sasikanth Manipatruni
IPC分類
H03K19/23; H03K19/0185; G06F7/487; H03K19/017; G06F7/501; H03K19/17736
技術(shù)領(lǐng)域
reset,gate,majority,pull,capacitors,adder,minority,multiplier,gates,node
地域: CA CA San Francisco

摘要

A multiplier cell is derived from a 1-bit full adder and an AND gate. The 1-bit full adder is derived from majority and/or minority gates. The majority and/or minority gates include non-linear polar material (e.g., ferroelectric or paraelectric material). A reset mechanism is provided to reset the nodes across the non-linear polar material. The multiplier cell is a hybrid of majority and/or minority gates and complementary metal oxide semiconductor (CMOS) based inverters and/or buffers. The adder uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. The non-linear polar capacitor includes ferroelectric material, paraelectric material, or non-linear dielectric. Input signals are received by respective terminals of capacitors having non-linear polar material. The other terminals of these capacitors are coupled to a node where the majority function takes place for the inputs.

說(shuō)明書

FIG. 16B illustrates 1-bit full adder 1620 using majority or minority gates with paraelectric capacitors, wherein the 1-bit full adder cell includes a NOR gate based reset mechanism, in accordance with some embodiments. 1-bit full adder 1620 is derived from multiplier cell 1600 after AND gate 302, pull-up device Mp1, and pull-down device Mn1 are removed. Inputs X, Y, and Sum_in are repurposed. For example, input Sum_in is removed, input Y is relabeled as ‘A’ and input B is relabeled as ‘B’. During reset phase, rst is asserted, and inputs A, B, and C_in are conditioned as 0, 0, and 0, respectively. Note, A, B, and Cin are symmetric and can be swapped with one another. In this example, input terminals of capacitors CPE4, CPE5, and CPE6 are conditioned to 0, 0, and 0, respectively while input terminals of capacitors CPE7, CPE8, CPE9, CPE10, and CPE11 are conditioned to 0, 0, 0, 0, and 0 respectively. During reset, NOR gate 1601 conditions logic 0 on node c1b, and hence input of paraelectric capacitors CPE10 and CPE11. Floating node c1 is then pull-down by Mn3 via rst signal, in accordance with various embodiments. In some embodiments, floating node s1 is pulled down by Mn5 via rst at the same time (or substantially the same time) when floating node c1 is being pulled down. In some embodiments, during the reset phase, the outputs Cout and Sum_out are forced to logical 0 outputs. For example, NOR gate 1602 forces Cout to be 0 during the reset phase. After the reset phase is over, evaluation phase begins. In various embodiments, the evaluation phase begins after one or more cycles (or a 1 or more microseconds) to allow charges on both terminals of the paraelectric capacitors to settle or stabilize.

權(quán)利要求

1
微信群二維碼
意見反饋