白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Using neural networks to process forensics and generate threat intelligence information

專利號(hào)
US11888895B2
公開日期
2024-01-30
申請(qǐng)人
Proofpoint, Inc.(US CA Sunnyvale)
發(fā)明人
Zachary Mitchell Abzug; Kevin Patrick Blissett; Brian Sanford Jones
IPC分類
G06F7/04; H04L9/40; G06N3/08; G06N3/045
技術(shù)領(lǐng)域
campaign,platform,neural,or,may,forensics,threat,compromise,networks,threats
地域: CA CA Sunnyvale

摘要

Aspects of the disclosure relate to generating threat intelligence information. A computing platform may receive forensics information corresponding to message attachments. For each message attachment, the computing platform may generate a feature representation. The computing platform may input the feature representations into a neural network, which may result in a numeric representation for each message attachments. The computing platform may apply a clustering algorithm to cluster each message attachments based on the numeric representations, which may result in clustering information. The computing platform may extract, from the clustering information, one or more indicators of compromise indicating that one or more attachments corresponds to a threat campaign. The computing platform may send, to an enterprise user device, user interface information comprising the one or more indicators of compromise, which may cause the enterprise user device to display a user interface identifying the one or more indicators of compromise.

說明書

Referring to FIG. 2D, at step 218, the enterprise user device 140 may receive a user input. For example, a user (i.e., a cybersecurity analyst, information technology specialist, and/or other employee performing network security analysis), may interact with the indicators of compromise interface. In some instances, in receiving the user input, the enterprise user device 140 may receive input information indicating that a particular attachment and/or URL should be flagged for further analysis, identifying other attachments and/or URLs for further analysis, providing feedback (e.g., indicating whether or not an attachment and/or URL was correctly identified as compromised), indicating that information is incorrectly clustered, indicating that a particular indicator of compromise should be filtered out in the future (e.g., because it is a generic indicator of compromise) and/or other input information.

At step 219, the enterprise user device 140 may send user interaction information (e.g., based on the user input received at step 218) to the campaign identification platform 110. At step 220, the campaign identification platform 110 may receive the user interaction information sent at step 219.

At step 221, the campaign identification platform 110 may retrain the one or more neural networks based on the user interaction information received at step 220. For example, the campaign identification platform 110 may relabel clustered information and/or message metadata in the one or more neural networks based on feedback and/or other information received at step 220.

權(quán)利要求

1
微信群二維碼
意見反饋