In Rel-14 LTE V2X (also known as LTE V2X), a basic set of requirements for V2X service in TR 22.885 is supported, which are considered sufficient for basic road safety service. An LTE V2X enabled vehicle (e.g., a vehicle configured with a UE 102 that supports V2X applications) can directly exchange status information via the PC5 interface. It should be noted that sidelink defines the procedures for realizing a single-hop UE-UE communication, similar to Uplink and Downlink, which define the procedures for UE-base station (BS) and BS-UE access, respectively. Along the same lines, PC5 was introduced as the new direct UE interface, similar to the Uu (UE-BS/BS-UE) interface. Thus, the PC5 interface is also known as sidelink at the physical layer such as position, speed and heading, with other nearby vehicles, infrastructure nodes and/or pedestrians that are also enabled with LTE V2X.
Rel-16 NR provides higher throughput, lower latency and higher reliability as compared to LTE, via a combination of enchantments to protocol numerology, usage of higher frequency bands (e.g., mm Wave Frequencies) and a selection of wider sub carrier spacings (SCS) (e.g., 30 kHz, 60 kHz, 120 kHz, and/or 240 kHz, in addition to the 15 kHz used by LTE) to match the higher frequency bands, and process for beam management (BM). Rel-16 NR is expected to provide an enhanced V2X service (also referred to as NR V2X) that leverages the higher throughput, lower latency and higher reliability provided by Rel-16 NR data transport services.
Therefore, it is desirable to enable a process in the NR V2X UE 102 that configures the physical layer to transmit different transmission beams, with different SCS, according to the available V2X frequency bands.