In an embodiment, a substantial number of magnetic field lines generated in response to excitation of the transmitter coil are generated within the loop structure. As the loop structure is made of a magnetic material, the field lines are concentrated within and along the length of the loop structure. In the closed loop structure, such length would include the entire length of the loop structure. In the open loop structure, such length would include the entire length of the loop structure in combination with length of the imaginary line that connects two ends of the loop structure, the two ends being configured to be positioned on either side of the body part. It is understandable that the imaginary line in physical context would be contained by skin and body tissue that is sandwiched between the two ends. Although the sandwiched skin and body tissue may result in a reduction in coupling coefficient because of leakage when compared to using the closed loop structure. Nonetheless, the skilled person would appreciate that despite some leakage, a substantial amount of magnetic field lines generated in response to excitation of the transmitter coil would still follow the path of the imaginary line because of the short distance between first end and the second end of the loop structure, in particular, when the implantable magnetic core is configured to be positioned within the area enclosed by the perimeter of the implantable receiver coil.