As another embodiment, in a case that the target channel is a PUCCH, the step 101 includes:
coding the pieces of UCI of different priorities respectively, mapping the coded pieces of UCI of different priorities to physical resources by using a time domain-first mapping method, and transmitting the coded pieces of UCI on the target channel.
For example, pieces of UCI of different priorities are low-priority HARQ-ACK (for example, eMBB HARQ-ACK) and high-priority HARQ-ACK (for example, URLLC HARQ-ACK). In a case that the low-priority HARQ-ACK and the high-priority HARQ-ACK are multiplexed together, if the terminal fails to detect a PDCCH corresponding to the last PDSCH of the low-priority service (for example, eMBB service), a base station and the terminal may have inconsistent understanding of the number of bits for the low-priority HARQ-ACK, and PRB resources used by PUCCHs are inconsistent. Therefore, in order to reduce the impact of missing detection of a low-priority PDCCH on the high-priority HARQ-ACK feedback, the high-priority HARQ-ACK and low-priority HARQ-ACK are coded respectively, and mapped to physical resources by using a time domain-first method, which can ensure that the base station correctly receives the high-priority HARQ-ACK feedback.
It should be noted that for UCI that is mapped to physical resources by using a time domain-first mapping method, code rates and/or beta_offsets of pieces of UCI are not limited in the embodiments of this disclosure, that is, for pieces of UCI of different priorities that are transmitted by using the time domain-first mapping mode, when pieces of UCI of different priorities are coded respectively, a same code rate may be used, or different code rates may be used, and a same beta_offset may be used, or different beta_offsets may be used.