FIG. 6 illustrates examples (upper and lower examples) in which random access resources following the bursts in time. In these examples, there are four sets of allowed random access resources: A, B, C, D. In these example, sets A and B share the same random access slot (time-frequency resources) and sets C and D share the same random access slot. The sets A and B can still be different if A includes one set of random access preambles while B includes another set of random access preambles. In some exemplary embodiments, the set of preambles for A is the same as for C, and the set of preambles for B is the same as for D. In some other embodiments, they differ from one another. In the upper example, the sets of allowed random access resources overlap in time. In the lower example, they overlap in frequency. The sets A, B, C and D are disjoint, since they differ in at least one of time, frequency or preambles.
Referring now to the random access mapping described with respect to the operation 112 of FIG. 1, a random access mapping defines a mapping from multiple measurement results (with various embodiments listed above) from multiple measurement RS's (with various embodiments listed above) to one or more set(s) of allowed random access resources (with various embodiments listed above).
Various embodiments of such mappings are listed below. The measurement result that is highest is used to select a set of allowed random access resources.
-
- In some embodiments, a measurement RS corresponds to a set of allowed random access resources. The set of allowed random access resources for the measurement RS with highest measurement result is selected.