AMF 421 directs RRCF 511 to serve UE 401 using the low-latency DNN, slice ID, QFI, network addresses, and the like. SMF 422 directs UPF 431 to serve UE 401 over DU 413 for the low-latency DNN. RRCF 513 in CU 415 signals the RRC in UE 401 to use the low-latency DNN, slice ID, QFI, network addresses, and the like. The low-latency user application and the SDAP in UE 401 exchange low-latency user data. The SDAP in UE 401 and RLC in RU 411 exchange the low-latency user data. The RLC in DU 413 and SDAPF 513 in CU 415 exchange the low-latency user data. In CU 415, SDAPF 513 and UPF 431 exchange the low-latency user data based on the DNN, slice ID, QFI, network address, and the like. UPF 431 and ASF 431 exchange the low-latency user data based on the DNN, slice ID, QFI, network address, and the like. ASF 431 applies UE context for UE 401 like application version, session ID, UE ID, session pointers, and other low-latency application metadata.
Due to UE mobility or some other factor, source RRCF 513 initiates a handover of UE 401 to CU 416. RRCF 513 and RRCF 613 exchange X2 handover signaling. During the handover, source ASF 433 continues to process low-latency data per the UE application context and to transfer low-latency data to source UPF 431. Source UPF 431 continues to transfer the low-latency data to source SDAPF 513. Source SDAPF 513 now transfers the low-latency data and to target SDAPF 612 responsive to the X2 handover signaling. SDAPF 612 transfers the low-latency data to target DU 414 responsive to the X2 handover signaling. Target DU 414 transfers the low-latency data to UE 401 over the RU.