Solid-state construction has implications that are as potentially as revolutionary with respect to electrical charge storage as they have been to active circuitry when transistors largely replaced vacuum tubes (thermionic valves) more than a half-century ago. For example, just as transistors invoke different mechanisms for controlling the passage of current through a circuit and realization of voltage and current gain, solid-state energy storage devices may utilize unique mechanisms for storing and releasing electrical charge at the point of load. Also importantly, solid-state energy storage devices exhibit an ability to charge rapidly by inductive coupling (rapidity due to the ability to resist overcharging), permitting wireless charging and potentially eliminating need for nearby power sources entirely.
It should be understood that, in various embodiments, the solid-state energy storage devices described herein categorically reference redox reactions. In exemplary embodiments, charge storage may be achieved through truly reversible redox reactions occurring some little distance into the depths of the electrode layer. That depth may be in the angstroms or into the low nanometers, and, to be more specific, less than 10 nanometers. Oxygen ions may form the basis of or otherwise take part in the redox reactions. In this text, oxygen may stand in for any other useful ion.
Without wishing to be bound by any theory, ions may enter and leave the electrodes during the charge/discharge cycles, and may reach depths of about 0.2 nm to about 10 nm, such as about 0.5 nm, about 1 nm, about 2 nm, about 3 nm, about 4 nm, about 5 nm, about 6 nm, about 7 nm, about 8 nm, about 9 nm, about 10 nm, or any combination of ranges between any of these specific values. In exemplary embodiments, the electrodes themselves range in overall depth/thickness from between about 7 nm to about 50 nm.