Hundreds of developed battery chemistries and architectures exist, and there is likewise an extreme diversity in terms of cycle life, storage capacity, robustness, stability, and cost. Nevertheless, certain commonalities emerge after careful consideration of the many variants.
Conventional batteries exhibit high energy densities compared to most other methods of energy storage, but perform very poorly compared to combustible sources of energy such as fossil fuels, alcohols, and hydrogen gas, all of which exceed conventional batteries by many multiples in this regard. This has important implications with regard to powered portable devices and electric traction.
Conventional batteries have low power density compared to both capacitors and high velocity flywheels. Their ability to follow fluctuating electrical loads and complex electrical impedances is therefore limited as well.