FIG. 2B depicts discharging of the solid-state energy storage device 200. The stored energy may be used during discharging by a load 250. In embodiments where oxygen anions (O? or O2?) correspond to the working ion, the electrons passed through the load 250 may be used in a reduction reaction at the second electrode where oxygen anions may be released. The oxygen anions may be conducted through the solid electrolyte 220 to the second electrode 230, where they may be taken up by the second electrode and electrons may be released to the voltage source in an oxidation reaction. It will be appreciated that the energy used by the load may correspond, at least in part, to energy stored by the electrodes, but other energy storage mechanisms may also contribute, such as capacitive energy storage and/or inductive energy storage. Physical/chemical changes to the electrodes may also be observed during discharging. For example, in one embodiment, the first electrode 210 will undergo gain of oxygen atoms and the second electrode 230 will undergo loss of oxygen atoms during discharging. As another example, the first electrode 210 and/or second electrode 230 may physically change size during discharging.