Although not depicted in the figures, an energy storage device may optionally comprise further comprise a first current collector in electrical contact with the first electrode and a second current collector in electrical contact with the second electrode. Optionally, the first current collector and the second current collector each independently comprise a compliant porous carbon material, which may be useful for accommodate expansion and contraction of materials of the solid-state energy storage device, such as the electrodes, the electrolyte, and other materials of the solid-state energy storage device.
Optionally, a solid-state energy storage device is fabricated by means of atomic layer deposition, a form of chemical vapor deposition involving precursor chemicals and a two stage deposition process, such as where the deposition chamber must be purged between processing stages. Atomic layer deposition (ALD) permits the formation of layers having a thickness of several nanometers or less and intricate surface features of similar dimensions. Advanced magnetron sputtering may also correspond to a useful deposition technique. Multiple deposition chambers may be useful for performing sequential deposition operations.