It will be appreciated that the above reference to ALD does not preclude the use of other nanofabrication techniques applicable to micro-circuitry either extant or in development, including CVD, thermal evaporation, epitaxial techniques, ultraviolet or X-ray lithography, holographic lithography, thermal evaporation, laser ablation or deposition.
In exemplary embodiments, individual “sandwiches” or cells comprise electrolytic layers alternating with metal containing electrodes. Actual charge storage occurs within the electrodes, such as by a process in which ions are oxidized/reduced on or within the electrodes.
The benefits of the ALD and advanced magnetron sputtering fabrication technique useful with embodiments described herein are several. For example, they permit a high degree of consistency and repeatability and thus a low defect rate. In addition, because they support the formation of three-dimensional, high radius features at very small scales, these techniques permit the designer to increase interfacial surface area by many multiples over that afforded by featureless flat surfaces within the same volume. For example, surfaces having contoured topologies that provide increased surface area are useful with various embodiments. Certain fabrication techniques, if properly controlled, may also allow for precise control over the crystal structure of materials and may allow formation of single crystal, polycrystal, or amorphous materials.