In addition, energy storage devices of various embodiments may be built up incrementally, layer by layer. Capacity within a given footprint may be optionally controlled by varying the number of layers and the dimension of depth. The disclosed solid-state energy storage devices further lend themselves to the construction of power distribution networks where the energy storage devices are made modular and modules are interspersed with active circuitry or transducers. It will be appreciated that strategic depositions performed according to the ALD process or advanced magnetron sputtering can support such architectures. Optionally, the number of modules within such overall architectures may be arbitrarily small or large in number, such as 2 or 3 or as many as about 10 or more than about 10. Modules residing within such architectures may collectively assume the form of star and hub networks, redundant rings, or meshes, for example.
It will be appreciated that, in embodiments, the term “gel” refers to a non-fluid colloidal network or polymer network that is expanded throughout its whole volume by a fluid. As used herein, gels are expressly excluded from consideration as solid materials. Example electrolytes that comprise a gel include, but are not limited to, Nafion, LiPON, etc., which may be used, for example, in thin film lithium batteries. In some embodiments, electrolytes that comprise a gel cannot be prepared by high temperature deposition methods. It will be appreciated that solid-state electrolytes that comprise a gel cannot be prepared by atomic layer deposition. In addition, electrolytes that comprise a gel cannot withstand exposure to temperatures exceeding, for example 100° C., 200° C., 300° C., etc., without undergoing substantial damage to the electrolyte structure and/or without resulting in a substantial decrease in the ionic conductivity of the electrolyte structure.