In FIG. 10A, the transition may be achieved by multiple separate solid electrolyte interlayers 1015 over a larger structure corresponding to solid electrolyte 1010 (if fabricated from bottom-up as shown) or over a larger structure corresponding to electrode 1005 (if fabricated from top-down as shown). As illustrated, energy storage device 1000 includes six (6) interlayers 1015, but it will be appreciated that more or fewer interlayers may be used, such as from 1 to 30, or more. Each interlayer 1015 may include electrode components 1020, which may occupy at least a portion of the interlayer 1015. Optionally, some interlayers 1015 may not include an electrode component 1020, but may simply comprise or correspond to a layer of solid electrolyte material. While the electrode components 1020 may be physically separated from electrode 1005, the small size dimensions of the interlayers 1015 and close proximity between interlayers 1015 and electrode 1005 may result in sufficient electrical conductivity between electrode components 1020 and electrode 1005 such that the electrode components 1020 function as if they are electrically connected to electrode 1005. For example, each interlayer 1015 may independently have a thickness of from 0.5 nm to 5 nm, such as about 0.5 nm, about 1 nm, about 1.5 nm, about 2 nm, about 2.5 nm, about 3 nm, about 3.5 nm, about 4 nm, about 4.5 nm, or about 5 nm. Similarly, each electrode component 1020 may independently have a cross-sectional dimension (e.g. a thickness and/or a lateral dimension) of from 0.5 nm to 5 nm, such as about 0.5 nm, about 1 nm, about 1.5 nm, about 2 nm, about 2.5 nm, about 3 nm, about 3.5 nm, about 4 nm, about 4.5 nm, or about 5 nm. Such interlayers comprising both solid electrolyte material and electrode material may be fabricated by a co-deposition or simultaneous deposition of both the solid electrolyte material and electrode material and/or suitable precursors or components thereof.