In contrast, the energy storage devices described herein make use of rigid crystalline lattice structures and amorphous structures. For example, defects may be deliberately and artfully introduced to a crystal lattice in order to provide transient pathways for the movement of ions. Similarly, defects or other irregularities may be present in an amorphous structure, providing ion transmission pathways. These pathways may be engineered and organized by various techniques involving the introduction of chemical dopants or by the imposition of strain or by the application of outside forces, either transient or persisting. Such forces tend to deform the crystal lattice or solid structure such that paths for ionic migration become present, for example. These design strategies executed on the molecular and supramolecular level may be used to regulate the volume of ionic flow, and the process may involve beneficial nonlinearities with respect to ionic volume that may be exploited.
H. Energy Storage Device Architecture