At 302, an indication of a status of a PV module or modules can be received by circuitry associated with the PV module(s), such as circuitry 110. As described herein, the indication can be a shutdown indication/command, a periodic heartbeat indication, a startup indication, an indication of a measurement at or near the module (e.g., voltage, current, temperature, vibration), among other examples. Also as described herein, the indication can be received from a local source, such as from a sensor at the PV module, or from a remote source, such as from an inverter, combiner box, or some other component (e.g., a manual “stop” button).
In various embodiments, the indication can be received by the circuitry over the power line (e.g., PLC), wirelessly (e.g., ZigBee, mesh network), or otherwise.
Circuitry can be shared among multiple PV modules or can be distributed such that each PV module is associated with corresponding circuitry. One example of the distributed circuitry can be in the form of a voltage limiting device in an enclosure (e.g., junction box) coupled mechanically to the back of the PV module or within the laminate of the PV module.
At 304, whether to switch between a first state and a second state can be determined based on the received indication.
In one embodiment, based on the determination at 304, a controller of the circuitry can either directly, or through one or more drivers, enable or disable the switch(es) to disable or enable the PV module, respectively. In one embodiment, by enabling the switch(es), the parallel path can be enabled such that the solar cells corresponding to the enabled switch(es) are no longer contributing voltage to the PV module's output.