白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Spatial audio array processing system and method

專利號
US11997474B2
公開日期
2024-05-28
申請人
Wave Sciences, LLC(US SC Charleston)
發(fā)明人
James Keith McElveen; Gregory S. Nordlund, Jr.; Leonid Krasny
IPC分類
H04S7/00; H04R1/40
技術領域
audio,acoustic,or,in,sound,green's,spatial,may,target,processing
地域: SC SC Charleston

摘要

A spatial audio processing system operable to enable audio signals to be spatially extracted from, or transmitted to, discrete locations within an acoustic space. Embodiments of the present disclosure enable an array of transducers being installed in an acoustic space to combine their signals via inverting physical and environmental models that are measured, learned, tracked, calculated, or estimated. The models may be combined with a whitening filter to establish a cooperative or non-cooperative information-bearing channel between the array and one or more discrete, targeted physical locations in the acoustic space by applying the inverted models with whitening filter to the received or transmitted acoustical signals. The spatial audio processing system may utilize a model of the combination of direct and indirect reflections in the acoustic space to receive or transmit acoustic information, regardless of ambient noise levels, reverberation, and positioning of physical interferers.

說明書

Multiple channels of audio can be combined to create patterns of constructive and destructive interference across the frequency band of interest that will discriminate between sound waves arriving from different directions. This approach is commonly referred to as “beamforming” due to the shape of the constructive interference pattern of an array of transducer channels arranged in a 2D planar configuration. Conventional, or delay-sum, beamforming (also called “acoustic focus” beamforming) combines the channels, with or without amounts of time delay being applied to the channels before combining for steering the “beam,” in a direction with a bearing and/or elevation relative to a conceptual 2D plane, as drawn through the array configuration. In the case of speech enhancement, conventional beamformers increase the SNR of the target source by reducing sound energy that comes of directions other than the steered direction. They are effective at reducing the energy of reverberation but also reduce energy from the target source that arrives at the array via an indirect path (i.e., the “early reflections” that do not arrive in the beam). Conventional beamforming requires prior knowledge of the array configuration to accomplish the design of the interference pattern, the range of frequencies the interference pattern (beamforming) will be effective over, and any steering direction, including understanding the required steering delays to steer toward the target source. Individual channels may also have additional channel-combining or other filtering applied on a per-channel basis to modify the behavior of the beamformer, such as the shape of the pattern.

權(quán)利要求

1
微信群二維碼
意見反饋