白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Facilitation of deep service path discovery for 5G or other next generation network

專利號
US11997583B2
公開日期
2024-05-28
申請人
AT&T Intellectual Property I, L.P.(US GA Atlanta)
發(fā)明人
Seyed Hashemi; Abbas Kiani
IPC分類
H04W40/24; H04L45/302; H04L45/64; H04W28/12; H04W40/34
技術(shù)領(lǐng)域
network,can,or,data,in,sdn,service,computer,nrf,repository
地域: GA GA Atlanta

摘要

A software defined network (SDN) can add network repository functions (NRF) into a configurations database to enable NF discovery. The SDN can subscribe to NRF notifications to receive new cloud native functions (CNF), registrations, or any other update to the CNF status in 5G system. In addition to listening to NRF notifications, the SDN can implement CNF pooling processes to periodically retrieve CNF from an NRF repository and stay in sync with 5G systems. Thus, a deep service path discovery can be developed from network service configurations and container call flows to enable an accurate alarm correlation and troubleshooting for the operations. This service path deep discovery can be designed and implemented as a standalone system or in an SDN framework with integration of a container management framework such as K8 kubernetes.

說明書

To meet the demand for data centric applications, features of proposed 5G networks may include: increased peak bit rate (e.g., 20 Gbps), larger data volume per unit area (e.g., high system spectral efficiency—for example about 3.5 times that of spectral efficiency of long term evolution (LTE) systems), high capacity that allows more device connectivity both concurrently and instantaneously, lower battery/power consumption (which reduces energy and consumption costs), better connectivity regardless of the geographic region in which a user is located, a larger numbers of devices, lower infrastructural development costs, and higher reliability of the communications.

The 5G access network may utilize higher frequencies (e.g., >6 GHz) to aid in increasing capacity. Currently, much of the millimeter wave (mmWave) spectrum, the band of spectrum between 30 gigahertz (GHz) and 300 GHz is underutilized. The millimeter waves have shorter wavelengths that range from 10 millimeters to 1 millimeter, and these mmWave signals experience severe path loss, penetration loss, and fading. However, the shorter wavelength at mmWave frequencies also allows more antennas to be packed in the same physical dimension, which allows for large-scale spatial multiplexing and highly directional beamforming.

權(quán)利要求

1
微信群二維碼
意見反饋