白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Heat dissipation system and an associated method thereof

專利號(hào)
US11997839B2
公開(kāi)日期
2024-05-28
申請(qǐng)人
General Electric Company(US GA Atlanta)
發(fā)明人
Alistair Martin Waddell; Mark Aaron Chan Chan; Owen Jannis Schelenz; Michael Fernahl
IPC分類
H05K7/20; F28D15/02; H01L23/427
技術(shù)領(lǐng)域
phase,heat,fluid,condenser,transfer,conduit,cooling,two,first,device
地域: NY NY Schenectady

摘要

Heat dissipation system, a power converter using such a heat dissipation system, and an associated method of thermal management of the power converter are disclosed. The heat dissipation system includes a condenser, a first cooling loop, and a second cooling loop. The first cooling loop is coupled to the condenser and includes a first two-phase heat transfer device. The second cooling loop is coupled to the condenser and includes a second two-phase heat transfer device. The condenser is disposed above the first and second two-phase heat transfer devices.

說(shuō)明書(shū)

FIG. 5 illustrates a schematic diagram of a heat dissipation system 310 in accordance with one embodiment of the present invention. In the illustrated embodiment, the heat dissipation system 310 includes a first cooling loop 311, a second cooling loop 321, and a third cooling loop 331. For ease of illustration, the condenser is not shown in the embodiment of FIG. 5. The first cooling loop 311 includes a first two-phase heat transfer device 312, the second cooling loop 321 includes a second two-phase heat transfer device 322, and the third cooling loop 331 includes a third two-phase heat transfer device 332. The first two-phase heat transfer device 312 receives a first portion 320a of a single-phase fluid 320 from the condenser and produce a first portion 324a of a two-phase fluid 324. Similarly, the second two-phase heat transfer device 322 receives a second portion 320b of the single-phase fluid 320 from the condenser and produce a second portion 324b of the two-phase fluid 324. The third two-phase heat transfer device 332 is receives a third portion 320c of the single-phase fluid 320 from the condenser and produce a third portion 324c of the two-phase fluid 324. It should be noted herein that the first portion 324a, the second portion 324b, and the third portion 324c of the two-phase fluid 324 are produced by exchanging heat with respective electronic components and/or the fluid within a sealed casing. In certain embodiments, the heat dissipation system 310 is configured to perform at least one of regulating a flow rate of the single-phase fluid 320 and the two-phase fluid 324 in the first, second, and third cooling loops 311, 321, 331 by passively pumping the first, second, and third portions 324a, 324b, 324c of the two-phase fluid 324 by each of the two-phase heat transfer device 312, 322, 332. Specifically, the first portion 320a of the single-phase fluid 320 and the first portion 324a of a two-phase fluid 324 in the first cooling loop 311 is passively pumped by first two-phase heat transfer device 312 to regulate the flow rate of the single-phase fluid 320 and the two-phase fluid 324. Similarly, the second portion 320b of the single-phase fluid 320 and the second portion 324b of the two-phase fluid 324 in the second cooling loop 321 is passively pumped by the second two-phase heat transfer device 322 to regulate the flow rate of the single-phase fluid 320 and the two-phase fluid 324 in the second cooling loop 321. Further, the third portion 320c of the single-phase fluid 320 and the third portion 324c of the two-phase fluid 324 in the third cooling loop 331 is passively pumped by the third two-phase heat transfer device 332 to regulate the flow rate of the single-phase fluid 330 and the two-phase fluid 334 in the third cooling loop 331. In accordance with the embodiments of the present invention, there is no need for use of active pumps for pumping the two-phase fluid from two-phase heat transfer devices 312, 322, 332.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋