In some embodiments, the FE material comprises organic material. For example, polyvinylidene fluoride or polyvinylidene difluoride (PVDF). The FE material is between two electrodes. These electrodes are conducting electrodes. In some embodiments, the electrodes are perovskite templated conductors. In such a templated structure, a thin layer (e.g., approximately 10 nm) of a perovskite conductor (such as SrRuO3) is coated on top of IrO2, RuO2, PdO2, or PtO2 (which have a non-perovskite structure but higher conductivity) to provide a seed or template for the growth of pure perovskite ferroelectric at low temperatures. In some embodiments, when the ferroelectric comprises hexagonal ferroelectric material, the electrodes can have hexagonal metals, spinels, or cubic metals. Examples of hexagonal metals include: PtCoO2, PdCoO2, and other delafossite structured hexagonal metallic oxides such as Al-doped ZnO. Examples of spinels include Fe3O4 and LiV2O4. Examples of cubic metals include indium tin oxide (ITO) such as Sn-doped In2O3.
The charge developed on node Vs produces a voltage and current that is the output of the majority gate 2300. Any suitable driver circuitry 2301 can drive this output. For example, a non-FE logic, FE logic, CMOS logic, BJT logic, etc., can be used to drive the output to a downstream logic. Examples of the drivers include inverters, buffers, NAND gates, NOR gates, XOR gates, amplifiers, comparators, digital-to-analog converters, analog-to-digital converters, multiplexers, etc.