This application is a division of U.S. application Ser. No. 17/835,986, filed on Jun. 9, 2022, which is a continuation application of U.S. application Ser. No. 17/131,767, filed on Dec. 23, 2020, which is a division of U.S. application Ser. No. 16/531,129, filed on Aug. 5, 2019. The contents of these applications are incorporated herein by reference.
The present invention generally relates to a magnetoresistive random access memory, and more specifically, to a magnetoresistive random access memory with particular composition of top electrode.
Magnetoresistance (MR) effect has been known as a kind of effect caused by altering the resistance of a material through variation of outside magnetic field. The physical definition of such effect is defined as a variation in resistance obtained by dividing a difference in resistance under no magnetic interference by the original resistance. Currently, MR effect has been successfully utilized in production of hard disks thereby having important commercial values. Moreover, the characterization of utilizing GMR materials to generate different resistance under different magnetized states could also be used to fabricate magnetoresistive random access memory (MRAM) devices, which typically has the advantage of keeping stored data even when the device is not connected to an electrical source.