While, in principle, more than two flat spiral coils could be provided in respective layers of a PCB, due to thermal conduction the outer layers of a PCB have two to three times greater current carrying capacity than any inner layers of the PCB. Accordingly, a double-coil structure such as that described above provides a balance between performance and complexity. Further, in this embodiment, each of the coils 31, 32 is a round or circular flat spiral coil. In other embodiments, one or each of the coils 31, 32 could instead be a rectangular (e.g., square) flat spiral coil. Whilst rectangular profile coils have a slightly higher inductance for a given profile, circular coils can be more easily interleaved and/or can have components packed between them, leading to an overall increase in PCB area utilization. A rectangular profile also required a longer track length for a given strength of magnetic field along the coil axis, which increases the resistance and reduces the Q value as compared to a circular coil of similar width.
The magnetic field generator 130 of this embodiment comprises first to sixth induction coil arrangements 132, each of which is identical to the induction coil arrangement 132 shown in