Referring now to FIG. 3, the preform of the second heat removal structure 114 shown in FIG. 2 may be further processed by patterning the inlay 128. This patterning may be carried out by drilling, for instance mechanically drilling or laser drilling, or by plasma etching. Alternatively, a photo-imageable resin can be used, or glue can be locally applied. As a result, through holes 120 may be formed in the inlay 128. More generally, the illustrated preform of the second heat removal structure 114 may be obtained by forming multiple through holes 120 in a highly thermally conductive sheet, which is here embodied as copper inlay 128.
Referring to FIG. 4, the preform of the second heat removal structure 114, obtained according to FIG. 3, may be connected with the structure shown in FIG. 1 (i.e., the first heat removal structure 112 attached to the stack 102 and to the component 108) by a continuous adhesive sheet 116 sandwiched in between. More specifically, connecting the mentioned preform of the second heat removal structure 114 with the first heat removal structure 112 may be accomplished by pressing the adhesive sheet 116 between the preform of the second heat removal structure 114 and the first heat removal structure 112, preferably accompanied by thermal energy.