As shown in FIG. 7, the second insulation film 26 is provided in the light emitting pixel 20G except a contact area in which the pixel electrode 31G is connected to the relay electrode 106G through the contact hole 28CT1. In addition, the first insulation film 25 is provided in the light emitting pixel 20G other than an area in which the relay electrode 106G is connected to the relay electrode 14c through the contact hole 25CT. The contact hole 28CT1, the relay electrode 106G, and the contact hole 25CT are examples of a “second connection part” and a “fourth connection part” in the invention. The second connection part and the fourth connection part are provided in the second area 28G (second layer thickness part). The second connection part and the fourth connection part are surrounded by the first insulation film 25 and the second insulation film 26. Further, in the second area 28G (second layer thickness part), the openings 29G (light emission area) are arranged in the Y direction. In addition, the first insulation film 25 and the second insulation film 26 are provided to be buried between the second connection part and the fourth connection part. Therefore, there is not a step due to the first insulation layer 28 between the openings 29G (light emission area) and the contact area. Compared to a case where there is a step, it is possible to cause a distance DY between the light emission area (openings 29G) and the contact area (relay electrode 106G) to be small. In other words, it is possible to cause the openings 29G (light emission area) to be close to the contact area on the right side of FIG. 7. Further, it is possible to cause the openings 29G (light emission area) to be close to the contact area on the left side of FIG. 7. Therefore, it is possible to cause the openings 29G (light emission area) to be large.