As illustrated in FIG. 1A to FIG. 3B, the display panel which can adopt the alignment method includes a display substrate 10, an optical adhesive layer 20, and a cover plate 30. The display panel includes a display region and a frame region located at the periphery of the display region. The frame region includes an annular dam glue 50 and an annular cutting region located on a side of the dam glue 50 away from the display region. The cover plate 30 is located on a side of the optical adhesive layer 20 away from the display substrate 10, and is connected to the display substrate 10 through the optical adhesive layer 20. As illustrated in FIG. 4, the cover plate 30 includes a window portion 32 located in the display region and a light shielding portion 31 located in the frame region. The display substrate 10 includes a flexible base substrate 11 (not labeled in FIG. 1A) and a plurality of light emitting elements 12 (as illustrated in FIG. 1G), a pixel defining layer PDL, and an encapsulation layer EPL disposed on the base substrate 11. The pixel defining layer PDL is used to separate the plurality of light emitting elements 12 (as illustrated in FIG. 1G), that is, the pixel defining layer PDL is used to define a plurality of sub-pixel regions, each of the plurality of sub-pixel regions is provided with one light emitting element 12. The encapsulation layer EPL is located on a side of the plurality of light emitting elements 12 away from the base substrate 11, for preventing water, oxygen and the like in the air from corroding the plurality of light emitting elements 12. The encapsulation layer EPL includes a first inorganic encapsulation layer EPL1, a first organic encapsulation layer EPL3, and a second inorganic encapsulation layer EPL2 (as illustrated in FIG. 1B) arranged in sequence in a direction away from the base substrate 11, that is, the distances from the first inorganic encapsulation layer EPL1, the first organic encapsulation layer EPL3, and the second inorganic encapsulation layer EPL2 to the base substrate 11 gradually increase. The display substrate 10 further includes a plurality of cover plate alignment marks 14 configured for aligning the display substrate 10 with the cover plate 30. The plurality of cover plate alignment marks 14 are located in the frame region. An orthographic projection of at least one of the plurality of cover plate alignment marks 14 on the base substrate is located between an orthographic projection of the dam glue 50 on the base substrate and display region (as illustrated in FIG. 1A) and the at least one of the plurality of cover plate alignment marks 14 is overlapped with the second inorganic encapsulation layer EPL2 in the direction perpendicular to the base substrate 11 (as illustrated in FIG. 1C, FIG. 1D, FIG. 1F and FIG. 2B), and an orthographic projection of at least another one of the plurality of cover plate alignment marks 14 on the base substrate is located between the orthographic projection of the dam glue 50 on the base substrate and cutting region (as illustrated in FIG. 1A). Or, an orthographic projection of at least one of the plurality of cover plate alignment marks 14 on the base substrate is located between the orthographic projection of the dam glue 50 on the base substrate and the display region and the at least one of the plurality of cover plate alignment marks 14 is overlapped with the second inorganic encapsulation layer EPL2 in the direction perpendicular to the base substrate 11. Or, an orthographic projection of at least one of the plurality of cover plate alignment marks 14 on the base substrate is located between the orthographic projection of the dam glue 50 on the base substrate and the cutting region.