Subsequently, green light and red light of the light having passed through the organic photoelectric converter 20 are absorbed and photoelectrically converted in sequence respectively in the inorganic photoelectric converter 32G and the inorganic photoelectric converter 32R. In the inorganic photoelectric converter 32G, electrons corresponding to the incident green light are accumulated in the n region of the inorganic photoelectric converter 32G, and the accumulated electrons are transferred to the floating diffusion FD2 by the transfer transistor Tr2. Similarly, in the inorganic photoelectric converter 32R, electrons corresponding to the incident red light are accumulated in the n region of the inorganic photoelectric converter 32R, and the accumulated electrons are transferred to the floating diffusion FD3 by the transfer transistor Tr3.
(1-3. Workings and Effects)
As described above, development of a photoelectric conversion element for blue light having high external quantum efficiency is desired. For example, a blue organic photoelectric conversion element using a porphyrin dye has been reported; however, external quantum efficiency thereof is about 20% at 80 V. In addition, a photoelectric conversion element using a combination of fullerene and a coumarin dye as materials of a blue organic photoelectric conversion film has been reported; however, external quantum efficiency thereof is about 23% at 5 V.
In contrast, in the present embodiment, as the material of the photoelectric conversion layer 24, the benzothienobenzothiophene-based compound represented by the general formula (1) described above is used.