In addition, in the present disclosure, the meaning of using (or mapping) a specific TCI state (or a TCI) when receiving data/DCI/UCI for any frequency/time/space resource is as follows. In case of DL, it may mean that a channel is estimated from a DMRS by using a QCL type and a QCL RS indicated by a corresponding TCI state in a frequency/time/spatial resource (layer), and data/DCI is received/demodulated based on the estimated channel. In addition, in case of UL, it may mean that a DMRS and data/UCI are transmitted/modulated using a Tx beam and/or power indicated by a corresponding TCI state in a frequency/time/space resource.
Here, a UL TCI state has Tx beam and/or Tx power information of a UE and spatial relation information, etc. instead of a TCI state may be configured to a UE through other parameters. A UL TCI state may be directly indicated by UL grant DCI or may mean spatial relation information of an SRS resource indicated by an SRI (sounding resource indicator) field of UL grant DCI. Alternatively, it may mean an OL (open loop) Tx power control parameter associated with a value indicated by a SRI field of UL grant DCI (j: an index for open loop parameter Po and α (up to 32 parameter value sets per cell), q_d: an index of a DL RS resource for PL (pathloss) measurement (measurement of up to 4 per cell), l: a closed loop power control process index (up to 2 processes per cell)).
Hereinafter, MTRP eMBB will be described.
In the present disclosure, MTRP-eMBB means that multiple TRPs transmit other data (e.g., other TB) by using a different layer/time/frequency. A UE configured with a MTRP-eMBB transmission method is indicated multiple TCI states by DCI and the UE assumes that data received by using a QCL RS of each TCI state is different data.